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Considered is the problem of the pressure of a rigid die, having a Plan 
form of a circular concentric ring, upon an elastic half-space. 

This problem attracted the attention of scientific workers. For 
example, the recent work of Egorov [ 1 1 and Aleksandrov [ 2 1 may be men- 

tioned. The difficulties known to occur in such type of problems require 
the establishment of an effective [approximate 1 solution. In one of the 
earlier works of Lebedev 13 I, special functions are introduced for this 
purpose, with the aid of which the solution of several boundary value 
problems for the annular region becomes possible. 

The integral transforms used in the present work, with the aid of 
which Mossakovskii 14 1 reduces the axially symmetric problem to the 
problem of linear conjugation in the plane of the complex variable, were 
employed for the derivation of a Fredholm-type integral equation with 
respect to the boundary value (in the region of contact) of one of the 
unknown functions; if this is known it is not difficult to find the 
pressure by means of a quadrature. For the Fredholm equation there is 
constructed an approximate solution with the aid of known, for this case 
approximate, methods. 

The surface of the die after impression is considered to be axially 
symmetric (the equation of this surface is given), the friction in the 
region of contact is not taken into account, pressure outside of the die 
is absent. The law of pressure distribution underneath the die is found.* 

* In article 15 1 Rostovtsev indicated an error made by Gubenko in his 
Paper [5 1. The formulas for the pressure underneath a circular die 
with a 
tional 

The 

plane base, obtained by means of formal application of frac- 
differentiation, are erroneous. 
author is grateful to N.A. Rostovtsev for this indication. 
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L As is hnowu, the solution of the problem [7, 8 1 reduces to find- 
ing the normal derivative Fl $3, 0) in the region of contact of a cer- 
tain function F(p, z), hamonic in the elastic half-space, vanishing at 
infinity and satisfying the following conditions at the boundary of the 
elastic half-space: 

Fz’(p, 0) = 0, 0 < p < b, a < p < 00 

w 
F (p* 0) = I(p), b < p < a 

where u and b are the outer and the inner-radii of the ring, respectively, 
p is the polar radius, f = f(p) is the equation of the die surface. 

'lhe origin of the coordinates is taken here at the center of the ring, 
the z-axis is directed into the half-space. 

'Ihe pressure p(p) underneath the die is detenained by the formula 

where B is the modulus of elasticity aud v is Poisson's ratio. 

2. We make use of the following formlas 13 1: 

and the inverse 

(2.2) 

where ui(x, z) are hamouic fuuctious in the plane (x, z) and autisym- 
metric with respect to z; Fi(p, z) awe harmonic functions in half-space 
and symmetric with respect to p. 

3. In the general case it should be assumed that the fumtiou f$> 
may be represented in the fow 
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j(p) = . . . + a&a2 + alp + a, + y + uy + $j + - * - 

We put 

jr(p) = a, + alp+ a2p2 + **St f2(p) = =< -Pg+=$ + . . . 

Then 
I (PI = fl (PI + fz (P) 

Such a representation of the function f(p) is obviously unique and 

the function fI(p) may be extended to zero and the function f,(p) to 
infinity. 

Let us introduce now two functions F,(p, z) and F,(p, z) which are 

harmonic in the elastic half-space, such that 

Fl(p, 4 + Fz(p9 4 = F (~7 21 

Fl (PI 0) = fl (PI (0 < p < a), F2 (P, 0) = f2k~) (b<P<@ 

Then the boundary conditions (l.l) attain the form 

Flz’ (p, 0) + F,,’ (P, 0) = 0 (O<p<b,a<p<m) (3.1) 

F,(p, 0) = f1(p) (0 < P < a)* F2(p,0)=f2(p) (b<p<'=) 

By Formulas (2.1) the last conditions are transformed for functions 

“i(“, 2) as follows: 
(3.2) 

t&c (2, 0) + U2r’ (2, 0) = 0, a < 1 z 1; Ul/(Go)=a1(4, I+0 

U1r’ (z, 0) + F25) (GO) = 0, lzl<b; uzz’(~ 0) =gz(N, lb] < 14 

where 

x fl (PI 
ho4 = 4(&s I/qP&3 

w f2 (PI 
ga(z)=4$3 I/mPd’l (3.3) 

0 x 

4. In finding ui (x, y ) (y = z) from the boundary conditions one can 
proceed in different ways. Let us use the following procedure. Let us 

assume that tan, functions Q1 (x, y, t ) and Q2b, y, t 1 are found which 

are harmonic in the half-plane xy, antisymnetric with respect to x, 
vanishing at infinity and satisfying along the straight line y = 0 the 
following conditions : 
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Qlxl (x, 0, q = 1, IxI<t, Qlzl (x, 0, t> == 0, /xl > 1 

Q*v’(G 0, t) = 1, l+Ct: Q*I/'(x, 0% 1) = 0, lx/.>1 

where t is a parameter. 

. . 
'Ihen the derivatives ulx 'k, y) and u 

the form 
2Y x, Y) may be represented in '( 

%'(x, Y) = -i&'(t) Q~x'(x, y, t)dt + iuzx; (t, O)Qlx’(x: y, t) dt + 
a 

+ kl (a) -t- $r’ (4 011 QIX’ (G Y, a) (4.1) 

%'(X, Y) = \ +,t” 6 0) Qm’ (2, y, t) dt - f g,’ 0) Qa,’ (x:, y, 2) dt - 
0 a 

- hn @I + %I (h W Qw’(x, y, b) 

The functions Q,(x, y, t) and Q2k, y, t) are easily determined. They 
are of the following form: 

Qm’ (x, Y, t) + iQ,,’ (5, y, t) = - -J- In 5: 

Qtx’ (x3 Y, 0 + iQzzl’ (x, y, t) = i 111 
J&3 (2 = 2 + iy) (4.2) 

z 

Equations (4.1) may be represented in the form 

ZI,~' (2, y) = -1 g,' (t) Qn,’ (x, y, t) dt -1 i Uzxt” ft, 0) Q!,’ (x, y, 0 df -/- 
0 a 

-t- El (4 + 4x (~7 011 Qw’ (~7 Y 9 a) (4.3) 

uzx’p, y) = i ulyt” (f, 0) Qm’ (x, y, f) df +fk (t> Qzr’ (XI Y 7 t) dt - 
C b 

- kz @I + %/’ ( b, 011 Qzx’ (x, Y, 6) 

Integrating (4.3) by parts and taking (4.2) into account we obtain 

z&, (x, y) = -$ ig, (1) In1 {A2} dt - $r& (t, 0) Im {A} dt 

(4.4) 
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For y = 0 the last equations take on the following form: 

z&(2, o~+~**d~_~$$z+f 

0 la 

0 

(4.5) 

valid for arbitrary x. 

5. 'Ibe derivative FE'b, 0) may be determined, for example, from the 
first formula (2.2). Taking (3.2) into account, we obtain 

1 a p &a (4 + uiz (r, 0) 
F,’ (p, 0) = - - 

2XP aP s I/pa 
xdx 

b 

(5-V 

We substitute into (5.1) the value of aiy(x, 0) from (4.5). In the 
double integral obtained we change the order of integration, assuming 
b < p < a. Taking then (1.2) into account we find 

xdx - 

+ f F& cot-l + B3 u;, (t, 0) dt} 

a 

where n co 

A = g, (t) dt - 
s s 

u;, (t, 0) dt 

0 a 

We note that for b = 0 Formula (5.2) takes on the simple form 

p(p) = _ E b+?&tdt 
2 (1 - 9) 2zp ap 

P 

l/t2 _ p2 

which coincides with the solution of the problem of a circular die, if 
(3.3) is taken into account. 

6. w e proceed now to find the derivative u;%(x, 0) in the region 
(a, = 1. 
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We eliminate the derivative u;~(z, 0) f rom (4.5) and obtain then the 
following integral equation for $x(x, 0): 

In solving Epuation (6.1) we use the approximation 

(b < ~1 (6.3) 

The value of N is selected in such a manner as to insure a certain 
prescribed accuracy. 'Iben with an accuracy which is not smaller than 
x < a, s < a we have 

In 

In 
> 

(6.4) 

Taking (6.4) into account, the kernel of the integral equation (6.1) 
may be represented in the form 

Substituting (6.5) into (6.1), we obtain the following representation: 

where m 

20/i = 
s 

c,I, (s) u,s, (s, 0) ds (k=l,...,N) 03.8) 
a 

Let us Substitute (6.7) i&O (6.8). lheII for zzk we obtain the SySttXil 

of equations 



Pressure of an axially symrctric circular die 

. . . . . . . . . . . . . . . . . . . . . . ..I......... 

z -A 
nk ‘2 + A42k ‘4 +- ’ * ’ + AanPk =%I + * ’ ’ + AzN2kZaN + Bak 

(6.9) 
2k - 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

z 
2N = A22NZs + A42NZ4 + ' " + Aln~NZ~n + ' ' - + A2N2NZ2N + BrN 

where 

A 
2 C0 $k ts) 

!m!tk=;;ji 
s 

Fds, Bti = i &k (s) CD (s) ds (6.10) 
cl a 

7. Let us consider an example. Let f(p) = h const (die with a plane 
base). and 

b e-l 
a f Ed = 0.462 (c=z.;l2EL. .) (7.1) 

In this case we must assume fl(p) = h, fz(p) = 0. From (3.3) we find 

gI(x) = 4k, gz(x) = 0. By (6.3) .and (7.1) we find 

lo s-2($++:), or N=i (7.2) 

The error is here not larger than 1%. The system (6.9) takea on the 
form: 

22 = A22 22 + B2r 
B* or za= - 

i-A* (7.3) 

2 4 6 8 10 
By Formulas (6.6) and (6.10) we flub 

2 bS 
C,(s) = s y t 

From (6.2) re find 

.(s)=$jl - a + t tdt 
n a-_t 3% - p 

0 

Taking into account (7.4). (7.5) and (7.2) we find from (6.11) 

co 

Up = C,(s)@(s)ds s 
a 

On the basis of (7.3). (7.4) and (7.6) we find 

(7.5) 

(7.6) 

(7.7) 
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From (6.71, (7.5) and (7.7) we obtain 

or taking (7.2) into account we find 

1611 b 

c=--u 3x” (7.8) 

In the expression for c the third factor is small as compared to unity; 
therefore 

Formula (5.2) for g,(x) = 4h and g,(x) = 0 takes on the form 

(7.10) 

where 

(7.11) 

Let us substitute (7.11) and (7.9) into (7.10). 'Ihe integral, enter- 
ing into (7.101, is integrated subsequently, first by parts and then 
taking expansion (7.2) into account. We obtain 

4hE 1 

p(p) = 2( 1 - vZ)Tc~ cot 

_-1 b Jfc~2-p~ n1 (P) 4b3 dJ 

Va" __p2 T~/Pz-- l/p2_-~-~~;ij;. 
I 

(7.92) 

where 

I3, (p) -Z - f In a~+$($)z(-g2 (7.13) 

J = $ cot- -___ ~l/a2---pecot_~ b da- 

P av/pz- 
(7.14j 

hJfp2-b2 
- a9pp [(azp2 + $62a2 + $ bap3)(p- va"- p2)-$b2p2 vaZ- ~'1 
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In particular, for b = 0 Formula (7.12) takes on the simple form 

Eh 1 
P(P)=,(i e - VZ) 1/a"-- p 

Let us remark in conclusion that if the die is so wide that the 
approximation 

a-+-b b 
ln,_b=Z, 

is valid then, as is easily verified, the derivative u;~(x, 0) = 0. Then 
Formula (7.12) takes on the form 

The graph of pressure distribution underneath the annular die for 
b/a = 0.3(a = 101, constructed by Formula (7.12) with an accuracy within 
the factor 2hE/(l- v2hr2, is shown in the figure. 
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