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Considéred is the problem of the pressure of a rigid die, having a plan
form of a circular concentric ring, upon an elastic half-space.

This problem attracted the attention of scientific workers. For
example, the recent work of Egorov [ 1 ] and Aleksandrov [2 ] may be men-
tioned. The difficulties known to occur in such type of problems require
the establishment of an effective [ approximate ] solution. In one of the
earlier works of Lebedev [3 ], special functions are introduced for this
purpose, with the aid of which the solution of several boundary value
problems for the annular region becomes possible.

The integral transforms used in the present work, with the aid of
which Mossakovskii [4 ] reduces the axially symmetric problem to the
problem of linear conjugation in the plane of the complex variable, were
employed for the derivation of a Fredholm-type integral equation with
respect to the boundary value (in the region of contact) of one of the
unknown functions; if this is known it is not difficult to find the
pressure by means of a quadrature. For the Fredholm equation there is
constructed an approximate solution with the aid of known, for this case
approximate, methods.

The surface of the die after impression is considered to be axially
symmetric (the equation of this surface is given), the friction in the
region of contact is not taken into account, pressure outside of the die
is absent. The law of pressure distribution underneath the die is found.*

In article [5 ] Rostovtsev indicated an error made by Gubenko in his
paper [6 ]. The formulas for the pressure underneath a circular die
with a plane base, obtained by means of formal application of frac-
tional differentiation, are erroneous.

The author is grateful to N.A. Rostovtsev for this indication.
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L. As is known, the solution of the problem {7, 8 ] reduces to find-
ing the normal derivative F/ (p, 0) in the region of contact of a cer-
tain function F(p, z), harmonic in the elastic half-space, vanishing at
infinity and satisfying the following conditions at the boundary of the
elastic half-space:

F/(,0=0, 0<p<h a<p<oo
(1.1)
F(p0)=/() b<p<a

where a and b are the outer and the inner.radii of the ring, respectively,
p is the polar radius, f = f(p) is the equation of the die surface.

The origin of the coordinates is taken here at the center of the ring,
the z-axis is directed into the half-space.

The pressure p(p) underneath the die is determined by the formula

E .
PO)=5q—o F (. 0)  0<p<a) (1.2

where £ is the modulus of elasticity and v is Poisson’s ratio.

2. We make use of the following formulas [3 ]:
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where u;(x, z) are harmonic functions in the plane (x, z) and antisym-
metric vnt.h respect to x; Fi{p, z) are harmonic functions in half-space
and symmetric with respect to p.

3. In the general case it should be assumed that the function f(p)
may be represented in the form
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/(9)=---+azp2+alp+ao+“_;!+%+%+_“
We put
filp) =a, +ap+ap*+..., fz(p)="_;l+
Then
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a-g
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7(p) = J1(p) + f2(p)

Such a representation of the function f(p) is obviously unique and
the function f,(p) may be extended to zero and the function f,(p) to
infinity.

Let us introduce now two functions F (p, z) and F, (p, z) which are
harmonic in the elastic half-space, such that

Fi(p, 2) + Fa(p, 2) = F (ps 2)
Fi(0,0)=/1(p) (0<p<a), Fi(p,0)=/e(0) (<p<om)
Then the boundary conditions (1.1) attain the form
Fil' (0 0)+Fo' (p, 0)=0  0<p<ba<p<o) (3.4)
Fi(p, 0)=fi(p) ©O<p<a), Fao(p, 0)=falp) (G <p<o)

By Formulas (2.1) the last conditions are transformed for functions
u;(x, z) as follows:

(3.2)
ug’ (2, 0) 4 ugs’ (2, 0) =0, a<|z}; Uy (2,0) =g, (), |z|<a
w2, 0) + was' (3, 0) =0, [z <b; w2, 0) = g(a), 5] < s
where

_42{_ 10 _ 400 _h®
g1(z) = 401%1/7»’—;»’ pdp, B2 (2) = 43,5& Vo edp  (3.3)

0 X
4. In finding u;(x, y) (y = z) from the boundary conditions one can
proceed in different ways. Let us use the following procedure. Let us
assume that two functions Q,(x, y, t) and Q,(x, y, t) are found which
are harmonic in the half-plane xy, antisymmetric with respect to x,
vanishing at infinity and satisfying along the straight line y = 0 the
following conditions:
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O (z, 0, )=1, |z|<y, Q' (2,0, 1) =0, lz| >t
Q' (z, 0, 1) = 1, lz| < Qa' (2,0, )=0, |z|>¢

where t is a parameter.

Then the derivatives u,,’(x, y) and uzy’-(x, y) may be represented in
the form

a

u’ (2, y) = ——-Sgl’ () Q' (z, y, t)dt +S Ugxt” (2, 0) @1’ (2, y, 1) dt +
1] a

+ [gl (a‘) —}' u?x, (a’ 0)] le’ (IE, Y, (l) (41)

20

b
u2yl (x’ y) = S u’lyl” (t7 O) 0214, (x’ ¥ t) dt _S g2’ (t) Qzu' (:IJ, Y. t) dt —

- [gZ (b) + ulu’ (b1 O)] Q2y' (I, Y, b)

The functions Q,(x, y, t) and Q,(x, y, t) are easily determined. They
are of the following form:
z—1

le (x1 Yy, t)+101y (.’13 Y, t)-——lnz+t
Vv—ﬁ @==z+iy)  (42)

O’ (%, y, ) + 10/ (2, y, 1) = —ln
Equations (4.1) may be represented in the form
uy’ (2, ¥) = —‘i &' (1) QO (2, y, t)dt + QSO " (1, 0) Q' (2, y, D) dt -+
0 a
+- [81(a) + uz' (@, 0)] Q' (2, ¥, @) (4.3)

ugx (2, Y) =
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— (82 (b) + uy’ (b, 0)1 Qe (x, ¥, b)

Integrating (4.3) by parts and taking (4.2) into account we obtain

uly (2, y)—_-%igl(l)lm{ }dt—-——guzx(t O)Im{ }dt
. - (4.4)
ty (2 y):%Suw(t O)Re{ }dz—%ggzu)ﬂe{ }dt
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For y = 0 the last equations take on the following form:

. ¢ ,0
uy (z, 0) = Zzg £1(t) dt———xg __2x(t )dt

T yz?— I3 z? — 2

(4.5)
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valid for arbitrary x.

5. The derivative F *(p, 0) may be determined, for example, from the
first formula (2.2). Takmg (3.2) into account, we obtain

, 1 9 g(‘r)+uz(1‘0)
F, (p,O) S'z——l—_

Inp dp Vo2 —a?

We substitute into (5.1) the value of uiy(x, 0) from (4.5). In the
double integral obtained we change the order of integration, assuming
b < p < a. Taking then (1.2) into account we find

dz (5.1)
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where

A=

o3

[¢]
g, (tydt ——g ugz (2, 0) dt

We note that for b = 0 Formula (5.2) takes on the simple form

B E 1 a¢{ a@
PO =~ ra=wm 55 |y

which coincides with the solution of the problem of a circular die, if
(3.3) is taken into account.

6. We proceed now to find the derivative uj (x, 0) in the region

(a, ).
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We eliminate the derivative uiy(x, 0) from (4.5) and obtain then the
following integral equation for uj, (x, 0):

Lo o)
gy (, 0) = Sr_f_sz( InSE? gy IE ) (s, 0)ds + @ (2) (6.1)

where

a

2 1 +0

D (x) = -—-—-g ——-32<Slnz——b
°

b 2 .
ﬁjb)gl(s)dsm?gzii_‘_i’ﬁdt (6.2)

b

%

In solving Equation (6.1) we use the approximation

at+b _ofb , 1 B 1 e
i~ (i gt f ) <9 63)

The value of N is selected in such a mamner as to insure a certain
prescribed accuracy. Then with an accuracy which is not smaller than
x < a, s < a we have

s+b B, o1 b8 1 it
I~ 2(?*‘?}‘?”*' ‘T INF1 2N+1) 6.4
+b b, b 1 pN ’
— ~2( Tymt- +2N+1 2N+1)

Taking (6.4) into account, the kemel of the integral equation (6.1)
may be represented in the form

C
(slns+ xlnz+b)zcg(3)—§—c‘(s) S 2:(3) (6.5)

z— —b z* zt 2N

where
. 2 4 peN—k+1)
Czk (s) — 2b21. 1( 1 [ 1 b 1

2}:+1FT2k+3§1\“+ +2N+1 AN

)(k=1, ..Ny (B.6)

Substituting (6.5) into (6.1), we obtain the following representation:

ng;(x,O)z%[§§+%~{~...+£§—;]+<D(x) (6.7)
where -
fop = S Cas (5) iz (5, 0) ds (k=1,...,N) (6.8)

Let us substitute (6.7) into (6.8). Then for z,, we obtain the system
of equations
Ty = A2y -+ Agezg ...+ Aznzz:n R AzNz 2N + B,

Z,;=A2423"1"A44Z4'+’...“‘i'f1 z +"'+A2N4Z2N+B4

2na " 2n
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..................................

(6.9)
Zok = A22k Z + A42k 2, t..oF Aznzk Zon +...t AzNzkzzN + Bik
%N = AzzN z,+ A42N Z, ...+ Aznzszn +.o.o+ A2N2N Zyy + BzN
where 2 °°C (s) b
tow-2{800 n-faoows o
a a

7. Let us consider an example. Let f(p) = h const (die with a plane
base), and

—1
¢ T = 0.462 (e=2.7128...) (14)

b ———
7 SeF

In this case we must assume f,(p) = h, fp(p) = 0. From (3.3) we find
g1(x) = 4h, go(x) = 0. By (6.3) -and (7.1) we find

a+b b 1 b8
lna_sz(—a—-—l—-:,—Ia-), or N=1 (1.2)

The error is here not larger than 1%. The system (6.9) takes on the
form:

B
29 = Ajs 29 -+ B, or z3= I?.@ (1.3)

0 2 4 6 § 10

am(gf 3-0 P By Formulas (6.6) and (6.10) we fina
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From (6.2) we find

0
P A\

8h a+t tde
Q(s):FSlna—___—tm (7.5)
0

Taking into account (7.4), (7.5) and (7.2) we find from (6.11)

[+

32h s b \4 1 b
By, = S Cﬂs)(lﬂs)ds:m(;) (1 +~5—;§')b"’ (7.6)
a
On the basis of (7.3), (7.4) and (7.6) we find

32k fb\a 1 F % (i)s
2y = 2—7,:—,(—;) '#_gh)sb‘ (1.7

1—5,‘,? a
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From (6.7), (7.5) and (7.7) we obtain

Uy (r, 0) = Ti\T) 1““—‘—‘———‘4 ( A >3

1 /by )
6411(_1;_\4‘““5“<7) (b\2 | BhC adt ta
7 V) v —
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or taking (7.2) into account we find

Fs (
, /b \2 16h D - 45m2 \
oy (4 O)SCK';) , =y T4 b3 (7.8)
=5 ()

In the expression for ¢ the third factor is small as compared to unity;
therefore

u (x, 0) ~ % (—f}) («2—)& (7.9)

Formula (5.2) for g (x) = 4k and g,(x) = 0 takes on the form

] E [ 4h t_‘l_b_]/az—p" Bp)
1’(P)ﬂ2(1_v2)n2 Va—p co T YiE—p sz—bZT
ac b VE— g
1 t 2—p?
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L= A (710
where
(>0}
a—b b .
B:Zhlnm»%?z—gu?x(t, 0) dt (7.11)

a

Let us substitute (7.11) and (7.9) into (7.10). The integral, enter-
ing into (7.10), is integrated subsequently, first by parts and then
taking expansion (7.2) into account. We obtain

4hE 1 b VE—FE B a3 dJ
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In particular, for b = 0 Formula (7,12) takes on the simple form

Eh 1
plp)= (1 —v9) V&y:—p—z

let us remark in conclusion that if the die is so wide that the
approximation

is valid then, as is easily verified, the derivative uj, (x, 0) = 0. Then
Formula (7.12) takes on the form
~1b Va—p* b }

4hE { 1 1
PO =T walya——p ' Tve_p T Vp_b

The graph of pressure distribution underneath the annular die for
b/a = 0.3(a = 10), constructed by Formula (7.12) with an accuracy within
the factor 2hE/(1 - v2)r?, is shown in the figure.
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